İletkenler ve Yalıtkanlar

Yıldız etkin değilYıldız etkin değilYıldız etkin değilYıldız etkin değilYıldız etkin değil
 


Bir maddenin iletkenliğini belirleyen en önemli faktör, atomlarının son yörüngesindeki elektron sayısıdır. Bu son yörüngeye "Valans Yörünge" üzerinde bulunan elektronlara da "Valans Elektron" denir. Valans elektronlar atom çekirdeğine zayıf olarak bağlıdır. Valans yörüngesindeki elektron sayısı 4 'den büyük olan maddeler yalıtkan 4 'den küçük olan maddeler de iletkendir.

Örneğin bakır atomunun son yörüngesinde sadece bir elektron bulunmaktadır. Bu da bakırın iletken olduğunu belirler. Bakırın iki ucuna bir eletrik enerjisi uygulandığında bakırdaki valans elektronlar güç kaynağının pozitif kutbuna doğru hareket eder. Bakır elektrik iletiminde yaygın olarak kullanılmaktadır. Sebebi ise maliyetinin düşük olması ve iyi bir iletken olmasıdır. En iyi iletken altın, daha sonra gümüştür. Fakat bunların maaliyetinin yüksek olması nedeniyle elektrik iletiminde kullanılmamaktadır.

Yalıtkanlar :
Yalıtkan maddelerin atomlarının valans yörüngelerinde 8 elektron bulunur. Bu tür yörüngeler doymuş yörünge sınıfına girdiği için elektron alıp verme gibi bir istekleri yoktur. Bu sebeplede elektriği ilemezler. Yalıtkan maddeler iletken maddelerin yalıtımında kullanılır. Yalıtkan maddelere örnek olarak tahta, cam ve plastiği verebiliriz. İsterseniz bu örnekleri arttırabilirsiniz.


Yarı İletkenler :



Aşağıdaki şekilde gördüğünüz gibi yarı iletkenlerin valans yörüngelerinde 4 elektron bulunmaktadır. Bu yüzden yarı iletkenler iletkenlerle yalıtkanlar arasında yer almaktadır. Elektronik elemanlarda en yaygın olarak kullanılan yarı iletkenler Germanyum ve Silisyumdur. Tüm yarı iletkenler son yörüngelerindeki atom sayısını 8 'e çıkarma çabasındadırlar. Bu nedenle saf bir germenyum maddesinde komşu atomlar son yörüngelerindeki elektronları Kovalent bağ ile birleştirerek ortak kullanırlar.

Aşağıdaki şekilde Kovalent bağı görebilirsiniz. Atomlar arasındaki bu kovalent bağ germanyuma kristallik özelliği kazandırır. Silisyum maddeside özellik olarak germanyumla hemen hemen aynıdır. Fakat yarı iletkenli elektronik devre elemanlarında daha çok silisyum kullanılır. Silisyum ve Germanyum devre elemanı üretiminde saf olarak kullanılmaz. Bu maddelere katkı katılarak Pozitif ve Negatif maddeler elde edilir. Pozitif (+) maddelere "P tipi", Negatif (-) maddelerede "N tipi" maddeler denir.

N Tipi Yarı İletken :



Arsenik maddesinin atomlarının valans yörüngelerinde 5 adet elektron bulunur. Silisyum ile arsenik maddeleri birleştrildiğinde, arsenik ile silisyum atomlarının kurdukları kovalent bağdan arsenik atomunun 1 elektronu açıkta kalır. Aşağıdaki şekilde açıkta kalan elektronu görebilirsiniz. Bu sayede birleşimde milyonlarca elektron serbest kalmış olur. Bu da birleşime "Negatif Madde" özelliği kazandırır. N tipi madde bir gerilim kaynağına bağlandığında üzerindeki serbest elektronlar kaynağın negatif kutbundan itilip pozitif kutbundan çekilirler ne gerilim kaynağının negatif kutbundan pozitif kutbuna doğru bir elektron akışı başlar.

P Tipi Yarı İletken :



Bor maddesininde valans yörüngesinde 3 adet elektron bulunmaktadır. Silisyum maddesine bor maddesi enjekte edildiğinde atomların kurduğu kovalent bağlardan bir elektronluk eksiklik kalır. Bu eksikliğe "Oyuk" adı verilir. Bu elektron eksikliği, karışıma "Pozitif Madde" özelliği kazandırır. P tipi maddeye bir gerilim kaynağı bağlandığında kaynağın negatif kutbundaki elektronlar p tipi maddeki oyukları doldurarak kaynağın pozitif kutbuna doğru ilerlerler. Elektronlar pozitif kutba doğru ilerlerken oyuklarda elektronlerın ters yönünde hareket etmiş olurlar. Bu kaynağın pozitif kutbundan negatif kutbuna doğru bir oyuk hareketi sağlar.

Azınlık ve Çoğunluk Taşıyıcılar :
Silisyum ve germanyum maddeleri tamamiyle saf olarak elde edilememektedir. Yani maddenin içinde, son yörüngesinde 5 ve 3 elektron bulunduran atomlar mevcuttur. Bu da P tipi maddede elektron, N tipi maddede oyuk oluşmasına sebep olur. Fakat P tipi maddede istek dışı bulunan oyuk sayısı, istek dışı bulunan elektron sayısından fazladır. Aynı şekilde N tipi maddede de istek dışı bulunan elektron sayısı istek dışı bulunan oyuk sayısından fazladır.

İşte bu fazla olan oyuk ve elektronlara "Çoğunluk Taşıyıcılar" az olan oyuk ve elektronlara da"Azınlık Taşıyıcılar" denir. Azınlık taşıyıcılar yarı iletkenli elektronik devre elemenlarında sızıntı akımına neden olur. İçeriğinde çok sayıda yarı iletkenli devre elemanı bulunduran entegrelerde fazladan gereksiz akım çekimine yol açar ve bu da elemanın ısınmasına, hatta zarar görmesine neden olur.

G.S.M.

1972 yılında Bell Laboratuvarları’nda mobil iletişimi gerçeklemek amacıyla hücresel sistem kurma fikri ortaya atıldı.O günden bu yana pek çok haberleşme şirketi ve kurumlar bu fikri benimsedi.Bunun üzerine pek çok şirket...

Uydu Sistemi

Fırlatma Evresi yaklaşık 25 dakika süren bu evre, en kısa fakat tüm evreler içinde en önemli olanıdır ve Fransız Arianespace firması tarafından gerçeklestirilmistir. Ateslemeler Fransız Guyanası’ndan, KOUROU dakı fırlatma rampasından...

ISDN Teknolojisi

ISDN (Integrated Services Digital Network), günümüzde kullanılan ses, veri, video, resimler vb. gibi farklı servisleri, hizmetleri, uygulamaları iletmek ve birleştirmek amacıyla oluşturulmuştur. ISDN, kullanışlı ve esnek bir altyapı sistemine sahip...

Direk Tipi Trafo

İletim hatlarında gelen orta gerilimi tüketicilerin kullanabileceği alçak gerilime düşüren ve direklerin üzerine monte edilen trafolara direk tipi trafolar denir.  Özelliği Bu tip trafo merkezleri genellikle küçük yerleşim birimleri ile ana dağıtım trafosuna uzak aboneleri beslemek için kullanılır. Trafo ve donanım direk üzerine monte edilmiştir. Bir kısım elemanlar ise direğin yanında bulunan alçak gerilim panosuna monte edilmiştir.

Güneş panelleri Tasarımı

 Güneş enerjisi kullanarak elektrik üretimi, bugünlerde sıkça konuşulan yenilenebilir enerji kaynağı uygulamalarının oldukça popüler olan bir çeşididir. Bol olması, bedava olması, işletme maliyetinin düşük olması ve çevre kirliliğine yol açmaması gibi birçok iyi nedenden dolayı yatırımcıların dikkatini çekmektedir. Bu çalışmada fotovoltaik hücreler ile elektrik enerjisi üreten sistemlerin maliyeti üzerinde durulmuştur.

Kirşofun Gerilimler kanununu

Kirşofun gerilimler kanununa göre kapalı bir elektrik devresinde (çevrede) devre elemanları üzerinde düşen gerilimlerin toplamıgerilim kaynağının gerilimine eşittir. Veya kapalı bir çevredeki gerilimlerin toplamı sıfırdır. Aşağıdaki şekle bakıldığında kirşofun gerilimler kanunu daha iyi anlaşılır. Yukarıdaki şekilde görüldüğü gibi Vk gerilimli güç kaynağından beslenen R1, R2 ve R3 dirençleri üzerinde düşen gerilimler VR1, VR2 ve VR3 gerilimleri vardır. Şekilde okla çizilen çevre devredeki bütün gerilimleri çevrelemektedir. Kirşofun gerilimler kanununa göre VR1, VR2, VR3 gerilimlerinin toplamı Vk kaynak gerilimine eşittir. Yani;

Parafudur

Bir yüksek gerilim tesisini veya bunun bir kısmını müsaade edilmeyen aşırı gerilimlere  karşı koruyan aygıtlara aşırı gerilimlere  karşı koruma aygıtları denir. Bu koruma aygıtlarından  biri  de  parafudurdur.  Parafudur,  büyük  akım  darbelerini  toprağa  iletir  ve işletmeyi  kesintiye  uğratmadan  aşırı  gerilimleri  şebeke  izolasyonu  için  zararsız  bir  düzeye indirir.

'W' Otomat Sigortalar

Evlerimizde, işyerlerimizde, endüstriyel tesislerde veya özel işletmelerde can ve mal kaybına karşı elektriksel olarak koruma yapmamız gerekmektedir. Bu koruma elektriğin üretildiği yerden başlayarak son kullanıcıya kadar devam eder. Elektrik sigortası, elektrik tesisatı üzerinde beslenilen hat üzerindeki anlık yüksek gerilim, aşırı akım, kısa devre, nominal akımın üzerinde akım geçişi gibi elektriksel olumsuzlukların önüne geçebilmek için termik ve manyetik özelliklerle elektrik enerjisini kesen bir güvenlik önlemidir.

50 HZ frekans

Frekans bir olayın birim zaman (genel olarak 1 saniye) içinde hangi sıklıkla, kaç defa tekrarlandığının ölçümüdür. Bir saniye içerisinde oluşan saykıl sayısına frekans denir. Ülkemiz elektrik şebekesinde frekans değeri 50 Hz’de sabit tutulmaya çalışılır. Bunun sebebi özel frekanslı sistemler haricinde tüm elektrikli cihazların 50 Hz frekansına uyumlu olmasıdır.

Akım Trafoları


 Akım Trafoları  "primer" dediğimiz esas devreden geçen akımı, manyetik bir  kuplaj  ile,  küçülterek  "sekonder"  dediğimiz  ikincil  devreye  ve  bu devreye bağlı cihazlara aktarırlar. Bunun sonucunda;  a) Cihazların büyük akımlar ile zorlanması, b) OG ve YG devrelerinde, cihazların büyük gerilimler ile zorlanması önlenmiş olur.

Alternatif Akım

Bildiğimiz gibi elektrik santrallerinde döner elektrik makinaları alternatif akım, yani sinüsoidal akım üretirler. Bu akımın üretilmesi Faraday Yasası’na dayanmaktadır. Faraday Yasası’na göre bir manyetik alan içerisinde hareket eden bir iletkende bir gerilim endüklenir. Buna göre manyetik alan ve iletkenlerden oluşan bir sistemde bu büyüklükten birinin sabit, diğerinin hareketli olması gerekir.

Alternatör

Generatörlerin çalışma esaslarında anlatılan akım her yarım turda yön değiştirir. Büyük güçlü generatörlerde kutuplar elektromıknatıslardan oluşur. Kutupları oluşturan bu elektromıknatıslara uyartım sargısı ismi verilir. Dinamonun Çalışması Yönü değişken olan bu akımı tek yönlü olarak dışarı alabilmek için kolektör (komütatör) ve fırçalardan oluşan bir düzenek kullanılır.

Ampul

Günlük hayatta kullandığımız çoğu teknolojinin kim tarafından, ne zaman icat edildiğini pek düşünmeyiz. Bizim için önemli olan işimize yaramasıdır. Bu teknolojilerden biri de tek bir düğmeyle çalışan akkor lambalar yani ampuller. Ampulün icadı deyince hemen Thomas Edison’un ismi akla gelir. Peki gerçekten öyle mi? Ampulü Edison mu icat etti? Gelin şimdi hep birlikte geçmişin karanlığında biraz gezintiye çıkalım ve “Ampulü kim icat etti?” sorusunu aydınlatmaya çalışalım.

    Yusuf Gökçe

    'Yusuf GÖKÇE Blog' Teknoloji'nin her dalından hayatımızı kolaylaştıran buluşların kısa ve öz teknik bilgileri bu portalda olacak...

    Bizden Makaleler

    © 2025 Yusuf Gökçe. Elektrik, Elektronik, Bilgisayar, Otomasyon, Telekominikasyon...

    Arama