Fibet Optik Haberleşme

Yıldız etkin değilYıldız etkin değilYıldız etkin değilYıldız etkin değilYıldız etkin değil
 

 

Bilgi kaynağı, optik haberleşme sistemine elektriksel işareti sağlar elektriksel verici optik kaynağı sürer. Optik kaynak taşıyıcı ışık kaynağının modülasyonunu yapar. (Elektrikten optiğe dönüşüm e/o). Optik fiber kablo taşıyıcı ortam olarak kullanılır. Optik alıcı (Fotodiyot ve tottransistör) demodülasyon yapar.(optikten elektriğe dönüşüm o/e). Daha sonra elektriksel algılama yapılarak hedefe gönderilir.

Bilginin taşıdığı yol boyunca, yukarıdaki şemada ‘’hat yükselticileri’’ zayıflamaları telafi etmek için belli aralıklarla yerleştirilirler. Bu hat yükselticileri elektro optik düzenler olduğu gibi, tamamen fiber yükselteçlerde olabilir.

Optik fiberli haberleşme sistemindeki gelişmeler aşağıdaki şekilde özetlenebilir.
a-) ilk kuşak sistemler :
Çok modlu basamak indisli fiberler kullanılmış ve kısa dalga boyu bölgesinde (0,8-0,9 μm) çalışılmıştır.

b-) ikinci kuşak sistemler :
Çok modlu gradyan indisli fiberler kullanılmış ve hem kısa hem de uzun dalga boyu bölgelerinde (0,8-1,6 μm) çalışılmıştır.

c-) üçüncü kuşak sistemler :
Tek modlu fiberler kullanılır ve uzun dalga boyu bölgesinde (1,1-1,6 μm) çalışılır.

1. Serbest Uzay İletimi:

Serbest uzay ortamında güneş ışığı kullanılarak yapılan ilk optik haberleşme düzeni, 1880’de A.G.Bell’in fotofonudur. Bu düzenleme ilk 200 m’lik bir mesafeye bilgi ulaştırabilmiştir. Bu iletim şekli, dış uzayda basit muhtemelen uygun olur.

Yersel haberleşme için toz parçacıkları ve yoğunluk homojensizliklerinin sebep olacağı saçılmalar hakkında endişe duyulabilir. Her şeyden önce yoğunluk atmosferde yükseklikle değişir; daha da önemlisi, solar ısınma, küçük ölçekte hızlı değişen yoğunluk dalgalanmalarına yol açabilir. Hava durumu ciddi soğuruma yol açabilir; mesela sis kolayca 40-60 dB’lik ciddi soğuruma yol açabilir. Ayrıca atmosferik gazlar tarafından da soğurum vardır. Sonuç olarak, serbest uzayda iletim pratik değildir. (bazı özel uygulamalar dışında)

2. Kılavuzlanmış yayılma:

Kılavuzlanmış yayılmada ilk teşebbüs, her biri f odaklıklı (birkaç on metre) ve 4t aralıkla yerleştirilmiş bir yakınsak mercekler serisi (ortak odaklı mercekler-confocallens) kullanmaktı. Bir merceğin 2t kadar önünde bulunan bir kaynağın görüntüsü, 2f arkasında bir noktada oluşturulur; görüntünün oluştuğu yer bir sonraki merceğin tam olarak 2t kadar önündedir ve böylece devam eder.

1960’larda, metal veya helozon biçimli tellerden yapılan dairesel dalga kılavuzlarında TE01 modu, mikrodalga frekansları için yoğun bir biçimde incelendi. Böyle dalga kılavuzları optik ve IR frekanslarında mümkündür; aslında milimetre altı bölgeye gidersek kullanılabilir.

Yansıtma borusu, 1960’larda incelenen bir başka eski fikirdir. Ve çok eğik gelişteki yüksek yansıtma dayanır. Ancak, böyle bir iletim hattını gerçekleştirmek çok zordur.

Kılavuzlayıcı ortam olarak cam fiberlerinin kullanımının çok cazip olduğu gösterildi. Bunun sebebi cam fiberlerin küçük boyutluğu hafifliği kolay kullanılması ve maliyetinin düşüklüğüdür.

OPTİK KAYNAKLAR :

Optik fiberler tarafından sunulan yeni imkanlar, ebat ve güvenilirlik bakımından uyumlu ve düşük güç harcayan optik kaynaklar ve dedektörlerle ilgili araştırmaları hızlandırmıştır. Yarıiletken ışık yayıcılar ve katıhal dedektörleri en ümit verici düzenler olarak görülmüştür. 77 0 K’ne kadar soğutulmuş bir GaAs ekleminde lazer olayı 1962 gibi eski bir tarihtedir. Ve p-n ekleminden elde edilen kohorent olmaya yayılımın ilk gösterilmesi 1963’te olmuştur. 1968’de ilk çifte hetero yapılı lazer çalışması yapılmıştır, ancak 1970’de oda sıcaklığında sürekli dalga çalışması elde edilebilmişti. Bu sonuç sıra ile değişen GaAs ve AlxGa1-xAs tabakalarından oluşan bir yapı kullanarak elde edildi. Çalışma dalga boyu 0,84 μm idi. Bu düzenlerin ömrü birkaç saatten uzun değildi.

O zamandan beri güvenilirlik ve ömür bakımından göz alıcı ilerlemeler sağlanmıştır. 1973’te, 1000 saatten fazla ömürlü aygıtlar yapılmıştır. 7000 saatten uzun ömürlü DHS lazerler 1977’de elde edilmiştir.

Kohorent olmayan yayıcılara  (LED’ler) gelince, 1971’de küçük alanlı, baştan yayılımlı, yüksek ışımalı, 0,85 μm’de yayılan DHS LED’leri geliştirildiğinde, önemli bir adım atılmıştı, bu LED’ler çok modlu optik fiberlere kuplas için uygundu daha ucuz fabrikasyon ve daha basit sürücü devreleriyle birlikte mükemmel güvenilirlik karakteristikleri bu LED’leri, lazerlere bir alternatif olarak, pratik uygulamalar için çok çekici optik kaynaklar haline getirdi.

Uzun mesafeli, yüksek bit hızlı iletimin, çok düşük kayıplı ve çok düşük dispersiyonlu fiberlerle elde edilme imkanı, bu yeni dalga boyu bölgeleri için, kaynaklar ve dedektörlerin geliştirilmesini kamçıladı. Işık kaynakları için III-V elementlerinin ikili, üçlü ve dörtlü kombinezonları kullanıldı. En başarılısı GaInAsP/InP çalışması ile 2000 saatten fazla ömür sağlandı. Eşik akımı bu 1000 mA civarına vardı. Bu tarihlerde 1,3 μm’de yayınım yapan küçük alanlı yüksek ışımalı InGaAsP cw LED’leri yapıldı. Lazerler konusunda son derece çok sayıda yapı geliştirildi. Eşik akımı ticari cihazlarda 10-30 mA bölgesine kadar düşürüldü. 1,55 μm’ lik DFB lazer diyotlarda 100 mHz ‘den daha dar çizgi genişliklerine ulaşılmıştır. Lazer diyotlar yüksek kapasiteli sistemler için, hız ihtiyaçlarını çok iyi bir şekilde karşılar. InGaAsP/InP düzenlerinin laboratuar örnekleri 20 GHz’in çok yukarısında çalıştırılmıştır. En iyi ticari cihazlar ise 10 GHz ‘e kadar geniş band genişlikleri gösterebilir.

FİBER OPTİĞİN TEMEL PRENSİPLERİ:

Fiber kablonun çalışması, ışığın tam yansıma prensibine dayanıyor. Işık, Fiber kablo içinde (damarında) çeperlerden yansıyarak ilerler. Tam yansımanın olabilmesi ışık demetinin fiber kabloya giriş açısına bağlıdır.

Kırılma indeksi, ışığın bulunduğu ortamdaki yayılım hızını gösteren bir kavram. Işık boşlukta saatte 800.000 km’lik bir hızla ilerler. Kırılma indeksi ışığın boşluktaki hızının herhangi bir ortamda hızına bölünmesinden elde edilir:
Kırılma indeksi = Işığın boşluktaki hızı / Işığın ortamdaki hızı
Boşlukta kırılma indeksi bu durumda 1’dir. Aşağıdaki tablo bazı tipik ortamlar için kırılma indeksini gösteriyor.

Bir ortamda ilerleyen ışık, başka bir ortama girdiğinde herhangi bir kayıp olmadan geldiği ortama geri yansırsa buna Tam Yansıma denir.

Fiber kabloların çeperi (dış kaplama bölümü) ve damarı (iç bölümü) değişik malzemelerden yapıldığı için fiber içinde ilerleyen ışık, damar bölgesinden çepere çarptığında tam yansımaya uğrayarak damara geri döner. Tam yansımanın olabilmesi için çeperin kırılma indeksinin damarınkinden daha az olması gerekir.

Işığın fiber kablo içinde tam yansımaya uğrayarak ilerleyebilmesi için fiberin damar bölgesine giren ışığın belli bir açının altında olması gerekir. Bu kritik açının oluşturduğu hayali koniye kabul konisi denilebilir. Kabul konisinin büyüklüğü, çeper ve damar kırılma indeksine bağlıdır.



FİBER OPTİK KABLOLARIN UYGULAMA PRENSİPLERİ

Elektromanyetik spektrumda insan gözünün algılayabildiği bölgeye görünür  bölge diyoruz. Görünür bölgede ışığın dalga boyu, ışık renkleriyle ifade edilebilir. Gökkuşağı renkleri – kırmızı, turuncu, sarı, yeşil, mavi ve mor – görünür bölgede bulunurlar. Fiber optik iletişimde kullanılan elektromanyetik dalgaların dalga boyu görünür bölgenin üzerinde bulunur. Tipik optik iletişim dalga boyları, 850 nanometre (nm), 1310 nm ve 1550 nm’dir. Hem lazerler hem de LED’ler fiber optik kablo üzerinden ışık sinyali üretiminde kullanılabilir. Lazer kaynakları 1310 ve 1550 nm ve tek mod uygulamalarında uygundur. LED’lerse 850 veya 1300 nm dalga boyundaki çoklu mod uygulamalarında kullanılabilir.

Fiberin en iyi çalıştığı bazı dalga boyu aralık pencereleri bulunuyor. Bunlara çalışma pencereleri denilebilir. Her pencere tipik dalga boyunun etrafında oluşur.

Bu pencerenin seçilmesinin nedeni, Fiber optiğin çalıştığı en iyi bölgeler olması, diğer bir deyişle eldeki ışık kaynağıyla iletişim özelliklerinin en iyi şekilde çalışması.

Sistemin frekansındansa şu  anlaşılıyor, sayısal veya analog sinyalin modülasyon frekansı veya diğer bir anlatımla ışık kaynağı tarafından bir saniyede gönderilen sinyal sayısı, frekans, Hertz birimi ile ölçülür. 1 hertz saniyede 1 pulsa karşılık gelir. İletişimde kullanılan pratik birimse megahertz’dir (MHz) ve saniyede 1 milyon atmaya (pulsa) karşılık gelir.

FİBER OPTİK KABLOLARDA KAYIPLAR

Fiber kablo içinde yer alan ışık sinyalinin enerjisi ve dolayısıyla şekli, değişik nedenlerle kayba uğrar. Bu kayıp desibel cinsinden ölçülür (dB/km). belli bir mesafede kullanılan fiberin düşük kayıplı olması gerekir. Dolayısıyla düşük kayıplı fiber optik sistemleri tercih edilir. Örneğin ilk çıkış gücünün %50 sini kaybı 3.0 dB’lik bir kayba karşılık gelir. Fiber optik kablolar birleştirildiğinde veya sistem içine monte edildiğinde, bazı kayıplarla karşılaşır. İki fiber kablo uç uca birleştirilirse, tipik kayıp 0,2 dB dir. Kayıp nedenleri pek çok olmakla birlikte iç ve dış kayıplar olarak iki sınıfa ayırabiliriz.

Işık sinyali, fiber kablo içinde herhangi bir düzensiz bölgeye gelirse saçılıma uğrar ve saçılıma uğramış sinyal o bölge tarafından emilerek ilerlemesi engellenebilir. Rayleigh saçılması, bilinen en önemli saçılım şeklidir. Fiber içindeki ışık, fiberi oluşturan cam atomları ile etkileşir. Işık dalgaları atomlarla esnek çarpışma yapar ve ışık dalgası saçılıma uğrar. Eğer ışık saçılımdan sonra tam kırılması sağlayan açıdan daha büyük bir açıyla çepere çarparsa, fiber kabloyu terk eder ve kaçar.

İkinci tip iç kayıp, ışık sinyalinin fiber tarafından emilmesidir. Bu tür kayıplar genel kayıpların %3-5’ini oluşturur. Işık sinyalinin fiber tarafından emilmesinin nedeni, fiberi oluşturan camın içinde bulunan kirliliklerdir. Bunlar titreşimi veya başka çeşit enerji kayıplarına neden olurlar.

Diğer kayıp tipiyse dış kayıplardır. Örneğin, eğer fiber optik kablo bükülürse bu bölgedeki gerilim artar ve gerilimin artması da kırılma indeksini değiştirir. Bu durumda ışık sinyalinin tam yansıması gerçekleşmeyerek damar bölgesinin terk edilmesine neden olur. Bu tür eğilmelere makro bükülüm adı verilir.

Bu bükülümler mikro düzeyde kablonun içinde olursa sinyal fiberin damar bölgesini terk ederek kayba neden olur.

Işık artması, fiber kablo içerisindeki yolculuğu sırasında yayılır. Bu durumda artma genişleyerek bir önceki veya bir sonraki atma ile çakışır, yani gönderilen ışık sinyali artık ayrılamaz hale gelir. Sonuç olarak iletilen bilginin karakteristik özelliği yitirilmiş olur. Diğer bir anlatımla bilgi kaybolur.

Kromatik dağılım, ışık kaynağında kullanılan dalga boyu aralığına bağlıdır. Lazer veya LED’ler tarafından üretilen ışığın dalga boyu belli bir aralıkta olur. Fiber içinde yer alan değişik dalga boyundaki dalgalar, değişik hızlara sahiptir. Dolayısıyla eşit mesafeleri farklı sürelerde alırlar; bu da sinyalin yayılmasına neden olur. Sinyalin gereğinden fazla yayılması onun karakterini bozar ve bilginin kaybolmasına neden olur. Bu tür kayıplar, tek mod fiber optik uygulamalarında oldukça önemlidir.

Bant Aralığı: Bant aralığını ışık sinyalini gönderdikten sonra diğer uçta bulunan dedektörün ayırabileceği özellikleri taşıyan bilgi miktarı olarak tanımlayabiliriz.

Daha önce anlatıldığı gibi yayılma, ışık sinyalinin dağılmasına neden olur. Bu dağılma, ışık atomlarının birbirleri ile birleşmelerine neden olur. Belli bir mesafede ve belli bir frekansta gönderilen atma, alıcı tarafından okunamaz hale gelir. Bunu dışında, genellikle çoklu mod fiberlerde görünen sinyallerin üst üste gelip karışması da bilginin kaybına neden olur.

Sistemlerin bant aralığı bir kilometrede megahertz (MHz) ile ölçülür. Örneğin eğer bir sistemin bant aralığı 200 MHz-km ise, bir saniyede 200 milyon atma (puls) bir kilometrelik fiber içinde birbirine karışmadan algılayıcıya ulaşır.

Hücresel Telefonda Bant Genişliği

Mobil Radyo Telefon (Mobile Radio Telephone)'lar telefon ağına bağlı ilk ticari ve kablosuz telefonlardır. Hücresel telefon teknolojisinin ilerlemesiyle birlikte sonradan 0G ( Zero Generation - Sıfırıncı Nesil) olarak anılmaya başlanmıştır.

Türkiyede Telekominikasyon

23 Ekim 1840: Bugünkü Türk Telekom’un Postahane-i Amirane adıyla Sultan Abdülmecit tarafından atıldı. 9 Ağustos 1847: İlk telgraf alma-çekme işleminin başarıyla gerçekleştirilmesi üzerine ilk telgraf hattının İstanbul-Edirne arasında döşenmesine başlandı...

Türksat 3A

Türksat 3A’nın üretimi için ilk resmi girişim 2005 yılının Nisan ayında başladı. Yeni uydunun tasarım, entegrasyon ve test aşamalarına paralel şekilde yürütülen teknoloji transferi ve eğitim projesinde 22 Türk mühendis...

    Yusuf Gökçe

    'Yusuf GÖKÇE Blog' Teknoloji'nin her dalından hayatımızı kolaylaştıran buluşların kısa ve öz teknik bilgileri bu portalda olacak...

    Aktüel Haberler

    Bizden Makaleler

    © 2025 Yusuf Gökçe. Elektrik, Elektronik, Bilgisayar, Otomasyon, Telekominikasyon...

    Arama